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Abstract

In pattern recognition tasks, the information from system input is modeled

through a series of nonlinear operations, which include but not limited to fea-

ture extraction, regression, and classification. Both theoretically and practi-

cally, these operations are inevitably subject to internal modeling error and

external disturbance, resulting at a performance challenge. Those state-of-the-

art methods, e.g. Convolutional Neural Network and Transformer, still display

significant instabilities and failures under practical applications, so comes a lack

of generalization. Consequently, the more robust pattern recognition methods

and related theories still merit a further study. This paper firstly reviews those

state-of-the-art technologies in the field. The bottleneck of performances in

those latest researches is associated with a lack of disturbance estimation and

corresponding compensation. Therefore, the implications of disturbance rejec-

tion in pattern recognition field are further discussed from a control point of

view. Then, the open problems are summarized. Ultimately, a discussion of the

potential solutions, which is related to the application of compensation on fea-

tures, is given to highlight the future study. Through the systematic review in

this paper, the disturbance rejection in pattern recognition is developed into a

control problem. Hopefully, more effective control technologies for the compen-

sation on features can be used to improve the robustness of pattern recognition

theoretically and practically.
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1. Introduction

As a branch of artificial intelligence, pattern recognition is designed to fulfill

some manual heavy works [1]. However, there is an essential difference between

artificial intelligence and human intelligence. Human makes qualitative analysis

and judgments based on rational thinking. In contrast, pattern recognition is5

built with quantitative calculation. How to realize human intelligence and dis-

turbance rejection is an important topic that so many scholars are still studying

[2]. Generally, pattern recognition fulfills a mathematics modeling for those

high-dimensional objects. This modeling can be realized through the manual

feature extraction methods, such as SIFT [3] and Gabor [4], or the data driven10

ones, for examples, the widely used Convolution Neural Network (CNN) [5] and

Transformer [6]. With the high-dimensional features, the regression problem

in a localization task or the probability estimation in a classification task are

accomplished. The working process of pattern recognition is shown in Fig.1.

The generalization of pattern recognition has always been a topic of impor-15

tance [7]. Once there is a difference between the test sample and the training

one, the success rate always decreases in varying degrees, for examples, the cross

age [8] and cross races facial recognition [9]. This is a bottleneck in the wider

promotion of pattern recognition. In the recognition process, modeling errors

are unavoidable, e.g. the depth of neural network, the operation of convolution20

or pooling, etc. Moreover, the input data is often coupled with various distur-

bances. For instance, there are several prominent factors that lower the success

rate in facial recognition, which include but not limited to occlusion, age and

gender [10]. Except the disturbances in facial recognition, some other distur-

bances include the noise problem in speech recognition [11], focusing problem in25

image recognition [12], object appendage in gait recognition [13], and pedestrian

disturbance in road lane detection [14]. All these representative disturbances
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Example: MNIST recognition. Disturbance d is the rotation of an image or the handwriting habits of specific user.

Figure 1: A typical pattern recognition process.

widely exist. In a word, it is almost impossible for any recognition system to

completely get rid of its internal modeling error and avoid external disturbance1.

Researchers have made many successful attempts to improve the general-30

ization. In facial recognition, there are diverse methods to improve the quality

of input image, so as to improve the performance, e.g. multimodal informa-

tion complementation [16] and image recognition under near-infrared light [17].

These methods are mainly designed with the digital signal processing which

focuses on noise or outlier [18]. Furthermore, the facial features in [8] are de-35

composed into the orthogonal age-related features and identity-related ones, so

as to improve the efficiency for a cross age facial recognition. In [19], latent

space projection is applied into the class imbalance problem, which is generated

by the inconsistent image resolution. In addition to the applications in facial

recognition, there are also some other efficient methods. In [20], the Mel Fre-40

quency Cepstral Coefficients (MFCCs) feature is used to separate the current

speaker’s voice from noise, thus improving the quality of speech recognition.

Besides, with the rapid development of artificial intelligence, many deep learn-

1The definition of modeling error and external disturbance are given from a system control

point of view in this paper. In some existing researches for pattern recognition, they may be

defined as Aleatoric and Epistemic uncertainty respectively [15].
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ing based techniques have been realized into the pattern recognition field, which

show a strong robustness [21].45

However, there is no uniform disturbance rejection criterion due to the di-

versity of different tasks. The modeling error is under cover by the deeper

and deeper networks [6], which usually fulfill the objective tasks with a black-

box mapping. Besides, the larger and larger datasets are used to approximately

cover all kinds of external disturbances, including the image noise, identity char-50

acteristics, and cross-domain difference [22]. These open-loop principles usually

ignore the modeling and compensation of internal and external disturbances.

All of the disturbances are regarded as an inconsequential factor that needs

to be avoided or eliminated. However, the depth of neural networks, the size

of datasets, and the VRAM of GPU can not be increased endlessly. There-55

fore, a novel solution is taken by the close-loop principle of feedback, in which

a compensation point of view is used to improve the recognition performances

[23].

Compensation is a core principle in the control science field [24]. In or-

der to resist the internal and external disturbances in electromechanical sys-60

tems, researchers have proposed different kinds of control theory, such as PID

[25], Active Disturbance Rejection Control (ADRC) [26], Disturbance Observer

Based (DOB) control [27], and Sliding Mode Control (SMC) [28]. The core

principle of these theories is to construct a feedback loop based on the error

between expected output and practical output, so as to realize a disturbance re-65

jection control. Currently, the feedback in pattern recognition is mainly used as

an information compensation [23]. In this paper, the compensation in pattern

recognition is further studied within a framework of disturbance rejection.

The modeling error and the external disturbance are two main factors af-

fecting the overall performance of a controllable system. However, the academic70

research and industrial application still lack a full-developed theoretical analysis

for the modeling error and external disturbance in a recognition system. Al-

though the denoise technology has been widely developed in pattern recognition

field, the more systematic and comprehensive development from a disturbance
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rejection control point of view is still an open problem. Therefore, this pa-75

per will firstly summarize the modeling error and external disturbance in those

state-of-the-art pattern recognition models, demonstrated in Section 2. Then

the open problems are developed in Section 3. Furthermore, the disturbance

rejection problem is studied in a control point of view in Section 4, in which the

potential solutions and future study are discussed. Ultimately, the conclusions80

are drawn in Section 5.

2. An Overview of Pattern Recognition: State-of-the-art

As shown in Fig.1, a pattern recognition task is usually realized with three

major operations: (1) data preprocess, (2) feature extraction, and (3) classifi-

cation or localization. This subsection summarizes some mainstream theories85

of pattern recognition in these operations. Then, the disturbance sources will

be analyzed for a further shortcoming concentration on these state-of-the-art

technologies.

2.1. Working Flow of Pattern Recognition

2.1.1. Data Preprocess90

Data preprocess is one of the main techniques for improving recognition per-

formance. For example, the smoothing filter or the Gaussian filter is widely used

in image denoising [29]. More in-depth, with the research of adversarial learn-

ing, it has been applied into image restoration and appendage elimination [30].

Generally speaking, the designer needs to choose a suitable method for data95

preprocess through a prior evaluation of the application scenarios. However,

with the expanding scenarios, the lack of robustness for traditional data prepro-

cess often results in a performance degradation [31]. When the new application

brings a new kind of disturbance, the system needs to be redesigned.

2.1.2. Feature Extraction100

In addition to data preprocess, the more robust feature extraction is another

important mean to improve the performance. Some manual extraction methods,
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such as SIFT [3] and HARR [32], mainly consider the grayscale information be-

tween pixels inside an image. Besides, through a large number of well-annotated

training samples [33], the system designed with machine learning can learn how105

to interact with the external environment then complete some specific tasks

in the high-dimensional state space [7]. As a representative machine learning

technology, deep learning is designed to simulate the structure of human brain

neurons [34]. When the high-dimensional data is transferred into a deep neural

network, the relationship between input and output is established with a layer110

by layer structure. The internal parameters of each neuron are obtained by a

performance optimization with the loss function [35].

2.1.3. Classification or Localization

Following feature extraction, the ultimate classification or localization sub-

task is usually completed by an activation function, such as Softmax or Sigmoid115

[36]. Some current works about disturbance rejection in the field are still focused

on the more robust classifier [37]. The more complicated if those application

scenarios are, the more contaminated input data will make the difference and

similarity between the recognizable objects become blurry. How to minimize

the distance between similar objects and maximize the distance between het-120

erogeneous ones simultaneously is still an important problem [38]. The output

error in a recognition system is reflected by an increase on uncertainty, or even a

wrong recognition result. With some current failure cases, such as the recogni-

tion errors between facial objects and the traffic accidents caused by automatic

driving [39], pattern recognition still has a long distance to become a full devel-125

oped artificial intelligence.

2.2. System Disturbances

When a system works, disturbance always exists. Since the birth of pat-

tern recognition, the concern about its robustness has never stopped [40]. This

subsection analyzes the generation of disturbances in a pattern recognition task.130
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2.2.1. Disturbance in Data

Different kinds of disturbances are always coupled in the input data, so comes

the Aleatoric uncertainty [15]. This part of disturbance mainly comes from the

external noise outside the recognition system, namely an external disturbance.

A typical case is the success rate reduction in cross dataset validation. When135

some current systems are assessed with a cross dataset validation, most of them

fails to retain a good performance, which owes to the variation of superimposed

disturbances contained in different datasets, e.g. the different races and cultures

in facial recognition [9]. Different kinds of dataset composition will have a great

difference on the success rate, no matter in a training stage or a testing one [41].140

To obtain an effective data preprocess, it is necessary to build a prior knowledge

towards the previous samples, as mentioned in Section 2.1.1. However, there is

still limited metric to judge an effectiveness of specific data preprocess operation.

Moreover, when new data is received, most of the systems have entered an

autonomous state at this moment. Therefore, the data preprocess needs to be145

taken without human revision. Once those disturbances contained in the input

are changed, such as race variation for human face, road condition variation

for automatic driving, and background noise variation in speech segment, the

original data preprocess may become far away from an optimal solution. The

useful information may be removed, while some useless one is kept. The current150

solution is a manual intervene, with which the preset process or the system

parameters are adjusted.

2.2.2. Disturbance in Feature Extraction

The main sources of disturbance in feature extraction include but not limited

to: the gradient estimation, the selection of kernel space, the setting of hyper-155

parameters, etc. The internal parameters of a recognition model are designed

with human prior knowledge or a performance optimization. However, due to

the contamination in training dataset and the incomplete system description,

such a design process leads to the Epistemic uncertainty [15]. As a result, the

internal modeling error always exists in a pattern recognition system. For ex-160
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ample, the complete modeling in independent component analysis (ICA) [9] is

regarded as a feature space consisting of a group of independent vectors, e.g.

(Y1, Y2, · · · , YM ). Nevertheless, it is usually unavailable. The estimated feature

space is built as (Y1, Y2, · · · , Ym). The estimated dimension m is smaller than

the ideal M . Then, the Input X is represented by:165

X =

M∑
j=1

αj · Yj =

m∑
j=1

αj · Yj +

M−m∑
k=1

αk · Yk ≈
m∑
j=1

αj · Yj , (1)

in which αj is the projection coordinate. Hence, the error convergent condition

is:

sup ||
M−m∑
k=1

αk · Yk|| ≤ ε . (2)

The upper limit ε should be bounded. Except the incomplete dimension, there is

still uncertainty on the loss function definition [42]. Moreover, the orthogonality

between Yj still needs to be further optimized by knowledge distillation [43]. All170

these factors lead to a cumulative modeling error.

2.2.3. Failure of Recognition

Due to the mentioned external disturbance in data, and the modeling error

in feature extraction, a recognition task may fail, e.g. the defeated models

under Adversarial Attack [44], the poor-performed deep networks in engineering175

applications [45], etc. The ultimate goal for pattern recognition is to distinguish

some input objects and output their corresponding information. The system

output can be obtained by different kinds of classifier, which are object-oriented

for some given classes, or by a regression of position coordinates. For example,

there are intraclass and interclass relationships in a classification task [46]. The180

recognition failure is given by a mistaken calculation of distance between and

within clusters. In Fig.2, Class A and B, corresponding to Eskimo husky and

Shetland sheepdog are separated by AY1 = Y2 in the two-dimensional feature

space. However, a soiled Eskimo husky is misclassified to be Shetland sheepdog

by the pretrained VGG-16.185
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Figure 2: An example of failure on CNN. The tested CNN is VGG-16 pretrained on ImageNet.

2.3. Current Technologies on Disturbance Rejection

The development of pattern recognition field has been focused on the dis-

turbance rejection problem, no matter for the far past development of digital

image processing, or those hot topics on artificial intelligence, e.g. the latest

ChatGPT [47, 48, 49]. The Big Data and Big Model become main principles190

in the field. For example, the classification system based on machine learning

is designed through the maximization for interclass difference as well as intra-

class similarity towards a training dataset. Some state-of-the-art disturbance

rejection techniques are reviewed in this subsection.

2.3.1. Data Augmentation195

In order to make the training dataset closer to the real scenario, researchers

use some controllable disturbances to modify those clean training datasets into

contaminated ones [50]. In [51], the random erasure blocks some pixels in the

input image, so as to train a more robust system. Besides, a fuzzy dataset in [52]

is generated by the clear still images. Then, the augmented dataset is used to200

make up for the deficiency of real video. Moreover, the widely used Generative

Adversarial Networks [53] are also applied into the data augmentation work [54].

9
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In summary, these methods are implemented in the designing and training

stage. From a system control point of view, once a disturbed signal is input, the

system will obtain a corresponding response under its internal working mecha-205

nism. This response reflects the input-output relationship under a disturbance

excitation. Such information can be used as the feedback signal to construct

a closed-loop system, so as to improve the robustness [55]. However, there is

still a lack of systematic design method and mathematical basis to realize the

concept of disturbance feedback in pattern recognition.210

2.3.2. Disturbance Representation

Different disturbance sources must bring variational impacts on diverse sys-

tems [21]. An effective way to improve performance is to identify the types of dis-

turbance with an explicit representation. Then a distinction of the disturbance-

related and disturbance-unrelated information needs to be done. In [8], the215

age-related representation of facial image is modeled by sphere polar coordi-

nates, which are orthogonal to each other. Similarly, the extended dictionary

learning in [56] is used to express the disturbance of appendages and clothing

in gait recognition.

The advantage of disturbance representation is to expand the feature expres-220

sion of an input object, so as to identify and compensate for the disturbance. In

contrast, the disadvantage is that it must be expressed for a specific disturbance.

When there are different kinds of disturbance, even for the unknown ones, the

dimension of feature space gets bigger and bigger.

2.3.3. Robust Features225

To guarantee a robust recognition, one of the necessary conditions is the ap-

propriate features. In ICA based expression recognition task, the race-related

features and expression-related features are represented by two groups of mutu-

ally independent vectors, then the race-related features can be selected through

a maximization of mutual information [9]. Besides, the influences of different230

disturbances are varied for different feature extraction methods. According to

10
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the variation generated by specific disturbances, the separability of those ex-

tracted features can be evaluated, such as the Fisher discriminant ratio [57].

If the Fisher discriminant ratio of a recognition system gets bigger, there are

more features could distinguish different classes in the objective task. Besides,235

the state-of-the-art technologies, e.g. the deeper and deeper network [58], the

Attention mechanism [6], the cross compensation between features [59], and so

forth, all point to the more robust features.

The core principle for this kind of method is to select the extracted fea-

tures which are more robust towards some given disturbances, no matter these240

disturbances exist in the collected dataset or in the manual augmented one.

However, the disturbances need to be specified with a prior knowledge. So, it is

difficult to be generalized into some more complex situations, especially those

cases containing several kinds of unknown disturbance sources [60].

3. Open Problems245

The topic of disturbance rejection comes from the control science field [26],

which usually consists of three necessary steps: (1) The disturbances are es-

timated, (2) The controllable input is constructed with a feedback gain, and,

(3) The compensated system completes the objective task. The compensation

principle in disturbance rejection has been applied into diverse realizations in250

pattern recognition field. However, the more systematical design of disturbance

rejection loop in a recognition system remains understudied. Those state-of-

the-art researches in pattern recognition are mainly taken on a model level

rather than a system level. Most of the latest researches focus on the improve-

ments of recognition model, e.g. the deeper and deeper networks or bigger and255

bigger training dataset. A systematic error compensation is rarely considered.

Therefore, the disturbance rejection in pattern recognition is designed passively

but not actively. To bridge the pattern recognition field and control science

field, the open problems towards disturbance rejection in pattern recognition

are summarized from a system control point of view in this section.260
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3.1. Evaluation Metrics

In system control field, the disturbance rejection ability of a system is usually

evaluated under the band-width, response time, peak value, etc [61]. In [62],

the definition of disturbance coefficient is given to evaluate the robustness of a

closed-loop system. However, the operation of those existing methods in pattern265

recognition still needs more evaluation proof to explain its robustness [63]. The

evaluation metrics is one of the determination factors affecting a system design.

Usually, the tracking problem in pattern recognition tasks is a minimum error

track on the high-dimensional object, such as the clustering with Center Loss

[64]. The current widely used robustness evaluation is the success rate or the270

related metrics on some target datasets [1, 14, 65]. From a mathematical point

of view, these success rate metrics are usually described by a one-dimensional

real number belonging to the interval of [0,1]. How to evaluate the complex

operations in a recognition system merits further study.

3.2. Features275

Feature extraction is always the core issue in pattern recognition [66]. No

matter for the useful information, or the rejected disturbance, all of them need

to be represented under a complete enough feature space. The controllable feed-

back for unknown disturbance and modeling error needs to be made towards

the compensated recognition system. The complete description for those dis-280

turbances in a recognition task merits a further study. What kind of noise will

lower the system performance? What kind of disturbance can be handled by

the compensation mechanism? These problems need to be further analyzed in

the specific recognition system.

3.3. Disturbance Observation and Compensation285

The observation and compensation for disturbances needs to be constructed

with the output error, e.g. the interclass similarity and intraclass difference in a

12
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classification task. In the case of Multi-Layer Perceptron, the intermediate ith

operation is usually taken as follows:

Ŷi+1 =σ(Ŷi · ωi + bi)

Y ∗i+1 =σ(Y ∗i · ωi + bi)
, (3)

in which Ŷi and Y ∗i correspond to the disturbed and ideal feature respectively.290

Usually, Y ∗i is defined to be a Cluster Center [64]. The weight matrix, the bias,

and the activation in a layer-wise calculation are represented by ω, b and σ(·).

Then, the disturbance observation d̂ is constructed by the given information,

e.g.

d̂ = FO

(
X, Ŷi, Y

∗
i

)
. (4)

The observation FO

(
X, Ŷi, Y

∗
i

)
is realized with a Bidirectional Matrix Feature295

Pyramid Network in [59], and a Semantic Feature Pyramid Network in [67].

Then, the object detection system, designed with a Feature Pyramid Network

(FPN) framework, is compensated, e.g. Ỹi+1 = σ(Ŷi·ωi+bi+d̂) in [23]. However,

the prior knowledge about Y ∗i maybe unavailable, especially in an Unsupervised

Learning case [68]. The more realizations of FO(·) remains understudied.300

3.4. Forward and Reverse Process

Disturbance rejection needs to eliminate the noise effect from a disturbed

input. Besides, the intermediate modeling error also should be compensated.

These observation and compensation works are realized towards the total dis-

turbance by ESO in [26], DOB in [27], BMFPN in [59], and SFPN in [67]. The305

disturbance observation forms a reverse process comparing with the forward one

in a recognition task, so comes a close loop. However, the nonlinear operations,

e.g. convolution and pooling, leave an open problem into the inverse model. In

GANs [53], the structure of Generator G and Discriminator D are usually differ-

ent. When and how the recognition model can be inverted merits a further study310

[69]. If the model can not be reversed theoretically, the disturbance observation

and its further compensation would become a more challenge problem.

13



Ac
ce
pt
ed
, o
nl
y
fo
r p
re
pr
in
t

Controller 

C

Nominal 

Model 

Disturbance d

Feedback 

K

Input  

X + +

-

- Output 

 

 

Figure 3: A close-loop controlled system with feedback.

4. Solution: Disturbance Rejection Control in Pattern Recognition

In control theory, the disturbance information is used to construct a closed-

loop feedback, with which an improvement on the compensated system can be315

achieved [70]. However, the pattern recognition model is quite different from the

establishment of state equation in some typical controlled systems. Moreover,

the input in pattern recognition is more complex. Luckily, some successful trials

have been realized, e.g. the Feature Compensation in FPN [23], the Two-stream

Network in visual detection [71], etc. This section will summarize the realization320

of disturbance rejection control theory in pattern recognition.

4.1. Disturbance Rejection Control

4.1.1. Classical Controlled Model

A typical closed-loop controlled system is shown in Fig.3. The Input X,

coupled with Disturbance d, is processed. Then the Output Y is obtained. The325

modeling error of Nominal Model F leads to an error between the expected

output and the practical one. Such errors are stabilized by the Controller C

and the Feedback Loop K. The mth order system is formulated as follows:



Ẏ1 = Y2

· · ·

Ẏm−1 = Ym

Ẏm = d(t) + F (Y, t) +B(Y, t) · U(t)

Y = Y1(t)

, (5)
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in which the time-related external disturbance is marked with d(t). The con-

trollable input is given by U(t). The modeling error is generally reflected in330

the construction of F (Y, t) and B(Y, t). Besides, the approximation of higher

order terms or the unknown nonlinear functions in F (Y, t) and B(Y, t) is often

ignored, which also contributes to the modeling error. A controllable system is

required to output the expected X under an error convergence, i.e. the Output

Y needs to be approximately equal to X.335

4.1.2. Disturbance Observation

The core problem of disturbance rejection in a controllable system is how to

estimate the disturbance then compensate for the error [72]. The observation

methods are varied based on the practical systems and the control strategies.

Time Domain Sense. In ADRC, the combination of Tracking Differentiator340

(TD), Extended State Observer (ESO), and Nonlinear State Error Feedback

(NLSEF), is used to compensate for the total disturbance [26]. The disturbance

in the mth order state variables, i.e. Ẏm = d (t) + F (Y, t) + B (Y, t) · U (t),

is determined by the modeling error, real-time input and external disturbance.

The principle of ADRC is to take these disturbances as a total disturbance. Then345

the total disturbance is compensated with Ẏm+1 in a reconstructed system, e.g.



Ẏ1 = Y2

· · ·

Ẏm−1 = Ym

Ẏm = Ym+1(Y, t, U(t)) + B̄(t)U(t)

Y = Y1(t)

. (6)

The additional state variable is Ym+1 (Y, t, U (t)), so comes the name with Ex-

tended State Observer (ESO), i.e.

Ym+1 (Y, t, U (t)) = d (t) + F (Y, t) + (B (Y, t)− B̄ (t))U (t) , (7)

15
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in which B̄ (t) is an approximation of B(t). Through an expansion of the State

Ym+1 (Y, t, U (t)), the total disturbance can be estimated and moreover com-350

pensated. The key element is to use the difference between practical output

and expected output for a disturbance observation. Then the compensation is

applied, so that the error is stabilized.

Laplace Domain Sense. In Laplace domain, the input-output relationship can

be formulated by a transfer function. A representative disturbance rejection355

control method in Laplace domain is the Disturbance Observer Based (DOB)

strategy [73]. Regarding to the DOB framework, the disturbance observation is

expressed as follows:

d̂ = F−1(s) · (F(s) · (U + d) + ζ)− U , (8)

in which ζ is the observation noise. Then, the system output is given by:

Y = F (s) ·
(
X − d̂+ d

)
≈ F (s) ·X . (9)

Towards some industrial application, it may be difficult to represent the Nominal360

Model F by a group of explicit function, which is similar to the complicated

neural network. Moreover, the inverse model of F−1 may be unattainable with

specific hardware equipment. Usually, this problem is solved by the design of Q

filter [74]. All these characteristics of DOB fit the ones in pattern recognition,

especially for the open problem of reverse process in Section 3.4.365

Pattern Recognition Sense. The disturbance d in pattern recognition, summa-

rized in Section 2.2.1, may be generated by a single source or multiple sources,

e.g. the rotation angle and the handwriting habits in Fig.1 may affect the recog-

nition result individually or jointly. Besides, these sources can be mutual inde-

pendent or dependent. Moreover, the intermedia modeling errors, summarized370

in Section 2.2.2 always exist. Referring to Section 3.3, the designing principle of

disturbance observation in pattern recognition is still an open problem. Firstly,

the external disturbance d varies according to different application scenarios.
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Moreover, the observation methods still lack a strict mathematical foundation.

For example, it is still difficult to observe the disturbance of soil in Fig.2. Al-375

though there have been some explorations in Section 2.3.2, how to observe d

from those intermedia errors in a recognition process remains understudied.

4.1.3. Controllable Input

A natural problem following disturbance observation is the construction of

feedback, i.e. error compensation. With an error between the practical output380

and the expected one, the disturbance observation is obtained, so that a further

compensation can be given towards the controllable input. The compensation is

used to form a feedback loop in the controllable system. Then the whole system

becomes a close loop. In control theory, feedback is a core principle to ensure

robustness [24]. Nowadays, the most widely used classical control method in385

the industry must be PID [75]. The control signal of PID is constructed by:

U(t) = kp · e+ ki ·
∫ t

0

edτ + kd ·
de

dt
, (10)

in which kp, ki, and kd are pre-set parameters. Error e is the difference between

the tracked Input X and the real-time Output Y. An adequate design of PID

can realize an unbiased tracking for Input X asymptotically [76].

4.2. Control on Pattern Recognition390

The modeling in a recognition system is quite different from the one in

traditional controllable system. Therefore, the specific compensation should be

designed based on the high-dimension feature space in pattern recognition.

4.2.1. Hierarchical Controlled Model of Pattern Recognition

The input of a recognition system is usually a high-dimensional object, e.g.395

the signal of X to be tracked in Fig.3 is an image or a segment of voice. Besides,

the output of a pattern recognition system is an identification or localization
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for the input [36]. Hence, the pattern recognition task with Input X under a

m-steps feature extraction is modeled as follows:



X̂ = FD(X, d)

χ = F0(X̂)

Ŷ1 = F1(χ)

Ŷ2 = F2(Ŷ1)

· · ·

Ŷm = Fm(Ŷm−1)

P̂N = FN (Ŷm)

, (11)

in which FD(·) is a data acquisition function for error-free Sample X, corrupted400

by the external Disturbance d. The acquired X̂ can be regarded as an image

or a segment of voice. The modeling, disturbance, and error in this hierarchical

model is demonstrated as follows:

• The disturbance d may be a variation of observation angle [77] or an occlu-

sion in facial image [78]. In the current researches, this kind of disturbance405

is regarded as an uncertain noise embedded in the Input X. Usually, it is

named with Noise in the literatures. In this paper, this kind of noise is

classified as external disturbance in a controlled recognition system, which

is independent with the other disturbance source of modeling error.

• The elimination of d should be taken by a data preprocess F0(·). The410

realization of F0(·) has been studied by voice denoise in [66], pedestrian

detection in [79], etc. Then a denoise Sample χ is obtained.

• The feature extraction of Fi(·) , i = 1, · · · ,m can be realized by the widely

used convolution, pooling, or full-connected layers [7]. After that, the

recognition process of P̂N is obtained by an activation function FN (·)415

with the deepest Feature Ŷm.

• The final recognition result is given by the respective information corre-

sponding to P̂N , e.g. N is the amount of objective classes in a classification
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task. The realization of P̂N can be a closest neighbor search or a proba-

bility estimation [7]. For example, a conditional probability estimation of420

PA = P (X ∈ Class A) = P (A|Ŷ1, Ŷ2, · · · , Ŷm) is obtained with all these

extracted features.

• The modeling errors in this recognition model include: (i) it is difficult to

guarantee that all these m steps of feature extraction is robust enough to

fulfill a recognition task, (ii) the feature space can not be validated to be425

an inner product space, and, (iii) the dimension of feature space can not

be determined theoretically.

• Example: In MNIST recognition task, disturbance d may be generated

by the rotation or occlusion of an image. Then, Input X is one of the basic

decimal digits of 0 ∼ 9. Due to the variation of d in application scenarios,430

the obtained features of Ŷi, i = 1, · · · ,m may not be able to represent all

of the information of X, so that the recognition result may be wrong.

4.2.2. Error System

When disturbance exists, the error system corresponding to Equ.(11) is mod-

ified as follows:435



e0 = X − χ

e1 = Y ∗1 − Ŷ1

e2 = Y ∗2 − Ŷ2

...

em = Y ∗m − Ŷm

eN = P∗N − P̂N

, (12)

in which the ideal recognition 〈X,Y ∗1 , Y ∗2 , · · · , Y ∗m−1, Y ∗m,P∗N 〉 is used to obtained

all intermedia errors. The error system (12) can be separated into three parts.

Firstly, e0 gives an error in the input data acquisition, which belongs to the

disturbance of external noise, discussed in Section 2.2.1. Moreover, the error
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of ei (i = 1, · · · ,m) is generated by the feature extraction Fi(·), discussed440

in Section 2.2.2. When these internal and external disturbances act on the

final result of P̂N , there always be a recognition error eN compared with the

desirable result P∗N , which is related to the failure in classification, demonstrated

in Section 2.2.3.

4.2.3. Error Convergence Condition445

The error convergence is one of the most important part in the system con-

trol field. In [80, 81, 82], additional proofs are given about the theoretical

performance of the disturbance rejection control. However, it is still a challenge

problem in almost all of the fields in pattern recognition [83]. Regarding to the

controlled system in Equ.(5), the ultimate goal for error stabilization is to real-450

ize a track on the output, i.e. ||Y −X||P ≤ ε in a LP norm. The similar form

in an ideal recognition should be the track on P∗ with ||P̂ − P∗||F ≤ ε. The

measurement criterion F includes the Euclidean distance, Wasserstein distance,

etc [84].

A correct recognition only needs to ensure that the minimum distance be-455

tween an input sample and its corresponding class is still the objective one,

rather than the others, which leaves a loose convergence. For example, a binary

classification between Class A and Class B is donated by A = (Y 1
A, Y

2
A, · · · , Y m

A )

and B = (Y 1
B , Y

2
B , · · · , Y m

B ) in a m-dimensional feature space. Then, a Class

A sample is observed by Â = (Y 1
Â
, Y 2

Â
, · · ·Y m

Â
). The mis-recognition occurs if a460

wrong closest condition is satisfied, e.g.

||Â−A||F > ||Â−B||F . (13)

How to avoid Equ.(13), and furthermore stabilize error system (12), is the fun-

damental problem in a stability proof. The stability condition for some other

recognition form, e.g. a localization, is similar to this classification one. A

similar deduction is omitted.465
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Table 1: Comparison of Nomenclature between Control Science and Pattern Recognition.

Nomenclature Control Science Pattern Recognition

System modeling Dynamic system, e.g. ODE, PDE Hierarchical process

System input: X Controllable variable Image, voice, etc.

System output: Y Controllable object Classification or localization

Tracking object Equilibrium Cluster or localization center

Disturbance (Internal) Nonholonomic or nonlinear constraint Network depth, feature completeness, etc.

Disturbance (External) Noise d(t) Image noise, voice background, etc.

Description operator State variable: Ẏ1, · · · , Ẏm Feature: Y1, · · · , Ym
Operation Differential, integral, and difference Convolution, pooling, and linear regression

SOTA PID, ADRC, DOB, etc. CNN, Transformer, etc.

Feedback design ESO, DOB, NLSEF, etc. Feature compensation, attention, etc.

Parameter turning Manual adjustment Loss optimization

Stability condition Error convergence

4.2.4. From Model to System

Currently, the state-of-the-art researches in pattern recognition are mainly

focused on the more robust models. The disturbance rejection development is

still stuck at the model level, not yet elevated to a systematic control level.

The control method on pattern recognition is quite different from the ones in470

classical control science field. A solid foundation from the mathematics point of

view merits a further study on the recognition process. A comparison between

the control problem in a classical dynamic system and the one in a pattern

recognition process are summarized in Table 1. The system model of pattern

recognition is built with Equ.(11) in a hierarchical computation form. However,475

most of the latest researches is taken based on the differential or difference

dynamical system, e.g. the one in Equ.(5). Besides, the tracking object in a

traditional control system is Equilibrium. In contrast, the tracking object in a

pattern recognition task should be a cluster or localization center. Furthermore,

the key element in a dynamical system is state, i.e. Ẏ in Equ.(5), while the one in480

a pattern recognition system is feature, i.e. Ŷ in Equ.(11). All these differences

deserve a further study in not only the control science field but also the pattern

recognition field. Pattern recognition has been developed for decades. Many
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Figure 4: A typical compensation on features (Example: FPN) [23].

theories and methods have been proved to be effective and robust in practice.

However, how such a mechanism could be explained for its rationality is an485

important issue that so many scholars still question on [2].

4.3. Realization of Feedback: Compensation on Features

The state-of-the-art researches of pattern recognition focus on two major

principles, i.e. (1) Data is all you need; and (2) GPU is all you need. If

the collected training dataset is closer to the application scenario, the model490

will perform better. Besides, if more GPU devices are used to train and test

a recognition model, the recognition performance will also be better. All of

these principles point to the robustness of extracted features. Therefore, most

of the feedbacks in pattern recognition is realized on features. For example,

a representative application in Feature Pyramid Network (FPN) is shown in495

Fig.4. The compensation for Feature Ŷ is taken as follows:

Ỹ = Ŷ + ∆Y , (14)

in which the compensation item of ∆Y fulfills a disturbance rejection. Then,

the fused Feature Ỹ should improve the recognition robustness. Several repre-

sentative cases about how to construct ∆Y are summarized in this subsection.
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4.3.1. Information Compensation in FPN500

The dilution disturbance in Feature Pyramid Network is associated with

an inevitable contradiction between semantic and localization information [85].

The deeper and deeper network is used to obtain more semantic information

for the input in an object detection tasks [5]. However, the less localization

information is reserved in the deepest features. The compensation mechanism505

for those hierarchy features is used to solve this problem. The compensation

item of ∆Y is realized with a Bidirectional Matrix in [59]. Besides, it is realized

with a Semantic Feature Pyramid in [67]. The compensation on feature is

constructed to make up for the semantic information in those low level features,

e.g. Ŷ1 or Ŷ1 in Equ.(11). Furthermore, the feature compensation makes up for510

the localization information in those high level features, e.g. Ŷm−1 or Ŷm.

4.3.2. Two-stream Ideology

The static image-based framework is not robust enough to reject those in-

ternal and external disturbances in a video-based recognition task [71]. On one

hand, the frame by frame operation needs a heavier computation cost. On the515

other hand, the information of variations in the input sequence also contributes

to the objective tasks. For example, in Parkinson detection, the video can show

abnormal expressions of a patient, which can not be obtained from a static image

[86]. Therefore, the compensation mechanism in Two-Stream network is used

to obtain a more robust recognition system. Specifically, the spatial network,520

e.g. a Convolutional Neural Network, extracts those identity and static features

of the input, which is used as the backbone Feature Ŷ in Equ.(11). Besides,

another temporal network, e.g. a Long Short Term Memory Network, exploits

the information of variations in the input sequence. As a result, those dynamic

information in the video sequence is used as the compensation item of ∆Y [87].525

4.3.3. Attention is all you need

The Attention mechanism is one of the hottest topic in the field [88]. The

relationships between feature maps, pixels in an image, or words in a sentence,
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are obtained by the Scaled Dot-Product Attention Mechanism, which is realized

by the calculation of three matrices, i.e. the Query, Keys, and Values [6]. Then,530

the Encoder-Decoder network is compensated with an attention feedback, so

comes the Transformer. The Attention mechanism constructs the compensation

item of ∆Y by a concentration on the key areas in the image or voice, which

has been widely used in the field, e.g. the Image Caption task [89].

4.3.4. Fine-turn in GPT535

Although GPT models have attract a lot of interest [47, 48, 49], Machine

Intelligence still has a big gap compared with Human Intelligence [90]. There

are still some untruthful or even toxic solutions in the GPT output. In the

latest GPT developments, these problems are corrected by a fine-tuning human

feedback, e.g. Reinforcement Learning from Human Feedback [91]. The com-540

pensation item of ∆Y is realized by a fine-turn based on reinforcement learning.

Firstly, the recognition model is trained with a supervised learning framework,

i.e. the backbone of Ŷ in Equ.(11). Then, the reward model is added to com-

pare the model output with human label. Finally, the reinforcement learning

policy against reward model is optimized as fine-turning, so that the open loop545

recognition system is closed with a human-in-the-loop.

4.4. Discussion on SOTA

Table 2 shows some improvements with a compensation, marked with +C,

on several state-of-the-art object detection models. Besides, a comparison of

Neural Image Caption (NIC) with or without Attention mechanism is shown550

in Table 3. Those open problems summarized in Section 3 still merit a further

study. The realization of a disturbance rejection control in pattern recogni-

tion still lacks a theoretical development on the disturbance observation and

compensation. Besides, many successful control strategies have not yet been

applied into the recognition tasks. The compensation on features is still an555

interesting topic. Moreover, the interpretability of all these methods still need

more theoretical developments and practical verification.
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Table 2: Performances of some state-of-the-art detectors with or without compensation on

MS COCO test-dev split [23, 59, 67]. APs: Average Precision related metrics in an object

detection task.

Method Backbone AP AP50 AP75 APS APM APL

One-stage detectors

RetinaNet ResNet-50 35.7 55.5 38.2 20.4 39.7 46.7

FCOS ResNet-101 41.0 60.7 44.1 24.0 44.1 51.0

Two-stage detectors

Faster R-CNN ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN +FPN ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN ResNet-101 38.2 60.3 41.7 20.1 41.1 50.2

Detectors with compensation

RetinaNet+C ResNet-50 38.0(+2.3) 57.2(+1.7) 40.5(+2.3) 21.9(+1.5) 41.5(+1.8) 49.6(+2.9)

FCOS+C ResNet-101 45.1(+4.1) 63.9(+3.2) 49.0(+4.9) 26.5(+2.5) 49.1(+5.0) 57.9(+6.9)

Faster RCNN+C ResNet-101 40.3(+4.1) 62.5(+3.4) 43.9(+4.9) 22.7(+4.5) 43.3(+4.3) 51.9(+3.7)

Mask RCNN+C ResNet-101 41.1(+2.9) 62.9(+2.6) 44.9(+3.2) 23.0(+2.9) 44.0(+2.9) 52.6(+2.4)

Table 3: Performances of NIC models with or without attention [89, 92]. B@1, · · · , B@4:

Bilingual Evaluation Understudy in n-gram precision (n = 1, · · · , 4) [93]. R: Recall-Oriented

Understudy for Gisting Evaluation [94]

NIC Method B@1 B@2 B@3 B@4 R

MSCOCO

Without Attention 0.625 0.450 0.321 0.229 0.554

Soft Attention 0.706 0.493 0.344 0.243 0.637

Hard Attention 0.717 0.502 0.358 0.250 0.655

Adaptive Attention 0.741 0.580 0.439 0.332 0.705

Flickr30K

Without Attention 0.663 0.423 0.277 0.183 0.554

Soft Attention 0.667 0.433 0.288 0.191 0.607

Hard Attention 0.667 0.439 0.296 0.198 0.606

Adaptive Attention 0.741 0.580 0.439 0.284 0.657
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5. Conclusion

The topic of disturbance rejection in pattern recognition is studied from a

system control point of view in this paper. A review on the current technolo-560

gies is summarized at first. Groups of studies point to a robustness problem

in pattern recognition. That is, the internal and external disturbances, which

affect the system stability, are still largely understudied. There is still limited

research on the disturbance observation and compensation in the field, not only

in the recognition model but also in the working system. Therefore, the pat-565

tern recognition task is further studied within a compensation framework in

this paper. Currently, it is still difficult to unify the recognition process into a

series of explicit function similar to the differential equation in a dynamic sys-

tem. As a result, the realization of disturbance observation and corresponding

compensation in pattern recognition is quite different from the dynamic system570

cases in the industry. The open problems are put forward. Then the potential

solutions are summarized based on some current studies in both of the control

science field and the pattern recognition field. A new systematic research point

of view is developed with the comprehensive review in this paper. These latest

developments on disturbance observation and compensation can open up further575

researches in the field.
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